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FUZZY LOGIC-BASED INFERENCING IN THE PRESENCE OF 
INPUT DATA UNCERTAINTY 

1. INTRODUCTION 

The objective of this study is to develop fuzzy logic-based inferencing methods for 
uncertainty management in information processing systems, with a view toward application in 
combat control systems (CCS). "Uncertainty management" in this context is defined as the 
representation, characterization, and propagation of uncertainty in data integration and decision 
support systems. In particular, this report describes the development of a new methodology for 
handling uncertainty in the input data to a fuzzy inference system and its application to data 
integration for contact management. 

The term "uncertainty" is defined by Webster's Dictionary as being in a condition of 
doubt. In an information processing context, uncertainty can be thought of as having a lack of 
definitive knowledge necessary to describe the process. Uncertainty is inherent in every aspect 
of the data integration process, as depicted in figure 1, and encompasses a wide range of 
variability. Uncertainty is present in the input data to the process (such as the measurement noise 
in the sensors), in the algorithms designed to process the data (such as the modeling assumptions 
underlying the algorithms), and in the output information presented to the decision maker (such 
as the form and content of the human-machine interface). Efficient platform-level data 
integration requires effective automated management of all these sources of uncertainty and is 
the key issue addressed in this work. 

Input Data 

Uncertainty 
Representation 

Processing 
Algorithms 

Modelins 
Uncertamty 

Output Information 

Uncertainty 
Descriptors 

Figure 1. Sources of Uncertainty in an Information Processing System 

The remainder of this report is organized in four sections. Section 2 provides the 
motivation for this work; in particular, it describes the naval significance and potential impact on 
submarine combat systems. Section 3 reviews traditional methods for handling uncertainty. 
Section 4 describes the technical approach for handling input data uncertainty in a fuzzy 
inference system. Section 5 presents experimental results for the single-leg target motion 
analysis (TMA) problem, including discussion of the results. Section 6 comprises conclusions 
and suggestions for future work. 
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2. MOTIVATION 

Combat system information processing entails the integration of data from diverse 
sources for tactical picture generation and maintenance, situation assessment and planning, and 
resource allocation and control. As advances in sensor technology offer more possibilities in 
gathering related organic, off-board, and environmental data, combat system operators are faced 
with the challenge of integrating vast amounts of data in real time. Current methods for data 
integration in combat systems do not adequately account for uncertainty in an automated fashion, 
and these methods rely heavily on operator manipulation and human interpretation. 

2.1 NAVY RELEVANCE 

The evolution of submarine combat control systems (depicted in figure 2) is characterized 
by two main areas of advancement: ( 1) increased levels of automation, and (2) incorporation of 
advanced information processing techniques. The enabling technology underlying these advances 
is the revolutionary development of modem-day computer hardware and software, coupled with 
the Navy's movement to commercial off-the-shelf (COTS) systems. 

Past: Present: Future: 
Uncertainty "Guesstimated" Uncertainty Assessment Uncertainty Management 

ion ~~* 
(2'ecision J ecasaon 

'"~~ 
Tactical Picture 

(! .. J 
(Decision) Wor1<stab Workstat 

Decision Support 
unacers Tactical Picture 

Automated Evaluation 
Information Management 

uperators 

Advanced Algorithms Intelligent Processing 

More Data/Less Time Lots of Data/Short Time 

Independent Operation Battlegroup Operations 

Figure 2. Evolution of Submarine Combat Control Systems 
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Current combat control systems, such as CCS Mk 1 and Mk 2, rely heavily on operator 
manipulation of input data and human interpretation of information processing results. The 
uncertainty inherent in the resulting tactical picture is, at best, "guesstimated" by the decision 
maker/commanding officer. Systems now being installed, like Target Motion Analysis 
Improvements (TMAI) in the Submarine Fleet Mission Program Library (SFMPL), provide a 
basic assessment of the uncertainty, such as the area of uncertainty (AOU) or contact-location 
containment ellipse. This assessment, which is possible through the use of advanced data 
processing algorithms and automated evaluation techniques, has been the focus of recent 
development efforts. 

However, a rigorous method for accounting for uncertainty in deployed systems is still 
lacking, hence continuing the reliance on operator manipulation and human interpretation. 
Within this process, diverse sources provide information of variable quality. These include both 
acoustic and nonacoustic data streams from organic and offboard sources, environmental and 
kinematic descriptors, intelligence reports, and sensor characteristics. The numerous 
uncertainties inherent in this information, depicted schematically in figure 3, may have severe 
repercussions on the perceived tactical picture. The combat system of the future demands the 
ability to automatically manage uncertainty, that is, to provide an effective means to represent, 
characterize, and propagate uncertainty to support tactical decision making. 

4 
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Figure 3. Uncertainty in the Combat Control Data Integration Process 



2.2 SCIENTIFIC CHALLENGE 

From a scientific standpoint, the integration of heuristic information in classical control 
and decision theory has always been an open issue. "Heuristic information" can be defined as 
subjective knowledge, which represents linguistic data (such as rules, expertise, design 
guidelines) that are usually impossible to quantify using traditional mathematics. On the other 
hand, conventional analysis and design methods are predicated on objective knowledge; that is, 
they are based on the availability of a mathematical plant (or process) model to describe the 
behavior of the system. Heuristic information, by its very nature, is inherently uncertain and has 
a semantic description.1 

Fuzzy sets are a promising alternative to traditional Boolean logic and Bayesian analysis 
techniques. There are now numerous industrial applications of fuzzy logic in signal processing 
and control systems, including subway operation (Hitachi), elevator scheduling (Mitsubishi), 
cruise control and automatic transmission (Nissan), and videocamera autofocus and image 
stabilization (Sony). The rationale underlying the relative success of fuzzy systems in 
engineering applications is best summarized in Zadeh's Principle oflncompatibility,2 which 
states, "As the complexity of a system increases, our ability to make precise and yet significant 
statements about its behavior diminishes until a threshold is reached beyond which precision and 
significance (or relevance) become almost mutually exclusive characteristics." In particular, 
fuzzy logic offers a unique methodology to incorporate qualitative information described in 
semantic terms or via heuristics for a domain-specific problem. 
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3. TRADITIONAL METHODS FOR HANDLING UNCERTAINTY 

In dealing with uncertainty in a large complex system, past work typically has utilized 
models of human reasoning and decision making. There are two broad classes ofhuman 
reasoning and decision making: (1) symbolic characterization, which is the psychological model 
of what people actually do; and (2) numerical characterization, which is the formal mathematical 
model of what logicians believe a rational individual would do. These models are outlined in 
table 1. The former category includes the Theory of Endorsements and Reasoned Assumptions, 
while the latter includes the methods of Bayesian analysis, Dempster-Shafer evidential 
reasoning, and Zadeh's fuzzy set theory.3 This work focuses on the numerical characterization 
methods. 

Table 1. Evolution of Symbolic and Numerical Models 
for Dealing with Uncertainty 

Symbolic 
(Psychological Models) 

Theory of Endorsements 

Reasoned Assumptions 

Numerical 
(Mathematical Models) 

Bayesian analysis 

Dempster-Shafer evidential reasoning 

Zadeh's fuzzy set theory 

Conventional numerical approaches for handling uncertainty in an information processing 
system have focused primarily on Bayesian techniques for data characterization and analysis. 4 

The Dempster-Shafer theory of evidential reasoning represents a generalization of Bayesian 
probability for producing inferences from uncertain information.5

•
6 Recent work in the area of 

reasoning under uncertainty has adopted fuzzy logic as an approach that integrates heuristic 
domain knowledge in a numerical framework to provide "collateral or competitively better 
information about a physical process." 1 

A unifying framework for data integration for contact management,' illustrated in 
figure 4, was previously developed at the Naval Undersea Warfare Center (NUWC) Division, 
Newport, RI. This process entails (1) data conditioning, which associates and characterizes 
available data and provides uncertainty descriptors; (2) data processing, which processes the 
conditioned data to form and maintain contact tracks, propagates the uncertainties, and provides 
for uncertainty descriptions associated with the resulting tracks; (3) model assessment, which 
detects, interprets, and resolves anomalies arising from uncertainties in modeling assumptions; 
and ( 4) process control, which provides for adaptive scenario-driven processing by intelligent 
selection of data, models, and algorithms. 
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Figure 4. Hierarchical Model of Data Integration for Contact Management 

Previous efforts at handling uncertainty in data integration have focused primarily on the 
data conditioning and processing stages (see figure 4). For example, in the tracking problem, the 
quality of the estimated track is evaluated based on a priori knowledge of statistical uncertainties 
associated with the plant model and the sensor measurements. 8 These uncertainties typically are 
modeled as additive, white Gaussian noise and are propagated through the conditional covariance 
matrix to form containment regions that indicate the final uncertainty associated with the state 
estimate (see Nardone et al.9 and the references therein). Mismodeling has a severe impact on 
the integrity of and the uncertainties associated with the estimate. This includes erroneous 
assumptions, such as constant velocity, fixed propagation path, and Gaussian distributions, as 
well as model-order reduction as a result of linearization. 

To alleviate these and other difficulties, a contact management model assessment 
algorithm for acoustic data processing has been investigated. Here, evidence is generated via 
detection of a finite set of features present in tracking residuals. Dempster-Shafer' s theory of 
evidential reasoning has been used for combination and interpretation of this evidence; however, 
the results can be inconclusive ifthere is a high degree of conflict in the evidence.10 To 
overcome this limitation, the application of fuzzy logic to model assessment was investigated, 11

'
12 

leading to the development of techniques as described in this report for handling uncertainty in 
the input data to a fuzzy inference system. Uncertainty management in data integration remains 
an outstanding technical issue and constitutes a significant Navy problem and scientific 
challenge. 
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4. TECHNICAL APPROACH 

This effort addresses the question of handling uncertainty in the input data to a fuzzy 
inference system (FIS), that is, the issue of characterizing and propagating an inexact input. A 
novel solution to this problem has been derived based on Zadeh's Compositional Rule of 
lnference13 and is discussed in subsection 4.2. Follow-on efforts are in progress to address the 
question of modeling uncertainty in the basic structure of an FIS (figure 5). Future studies are 
proposed to investigate the theoretical relationships between Bayesian probability and fuzzy 
systems theory (which is based on possibility). 

4.1 PROBLEM SETUP 

From a mathematical perspective, an FIS is a nonlinear functional mapping from a vector 
of crisp inputs,! to a crisp outputy ;f,!~ y. As depicted in figure 5, an FIS consists of the 
following basic components. 

1. Fuzzifier: converts crisp input numbers to membership values in fuzzy input 
membership functions. These membership functions provide a qualitative description of the 
input variables in semantic terms, such as low, medium, or high. The membership values are 
denoted as fuzzy input memberships in figure 5. 

2. Inference engine: maps the fuzzy input memberships to a single fuzzy output set based 
on applicable rules from the knowledge base. This fuzzy output set is the result of aggregating all 
the output membership functions from the rules that are triggered by the given inputs. 

FIS 

Inference Engine 

Knowledge Base 

Fuzzifier 
Rules 

Defuzzifier 
A 

~ y 

~ / 
Fuzzy ~ ~ v Fuzzy 
Input Output 
Member- Set 
ships lnferencing Aggregation 

Figure 5. Basic Structure of a Fuzzy Inference System (FIS) 
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3. Defuzzifier: converts the fuzzy output set to a crisp output value for subsequent usage, 
such as the controller output in a feedback system. This crisp output is representative of the 
fuzzy output set, analogous to the expected value in a probability distribution. 

For simplicity and ease of discussion, only the scalar input case will be considered; that 
is, ~ = x. Over the space of all possible input values, an FIS can then be considered simply as a 
scalar function y = f(x), as shown in figure 6. This is a prototypical engineering viewpoint of 
an FIS and represents a model that commonly is found in the fuzzy systems literature.14 The 
power and appeal of this model stems from the use of heuristic knowledge in the form of 
linguistic rules, which constitute the core element of an FIS. This model has been very 
successfully employed in several applications, most notably in the area of control systems.15 At 
NUWC Division Newport, for example, fuzzy logic has been successfully applied and 
demonstrated for the control of underwater weapons. 16 

A f(x) y 

FIS 

b ,.. f{x) ,.. 
~a y=b 

X 
a 

b = f(a) 

Figure 6. FIS Viewed as a Crisp Nonlinear Functional Mapping 

4.2 HANDLING INPUT DATA UNCERTAINTY IN AN FIS 

In this subsection, a solution is presented to the basic problem of handling uncertainty in 
the input data to an FIS, that is, the issue of characterizing and propagating an input that is 
represented with variation about x = a. This solution is motivated by the observation that the 
fuzzy output set that is produced by the inference engine of an FIS (see figure 5) constitutes a 
fuzzy representation of the output. In other words, the output of the inference engine is not a 
discrete, crisp quantity; but rather it is a continuous, fuzzy membership function that takes 
different membership values over the output variable space. This fuzzy membership function 
constitutes an imprecise description of the output; thus, it inherently provides a characterization 
of the uncertainty associated with the output. This insight, which has emerged only recently in 
the fuzzy literature, is the basis for further exploration into uncertainty representation and 
characterization in fuzzy systems.17 
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F(x,y) 
y - FIS _,. 

/ 
/ --_,. 

I / Defuzzifier 
/ 

I I 
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Centroid 

X y 
mx(y) 

X 

Figure 7. FIS Viewed as a Fuzzy Nonlinear Functional Mapping 

The interpretation ofthe output from an FIS inference engine as described above is 
shown in figure 7. For the crisp input x=a, the inference engine output is the membership 
function ma(y) that is obtained prior to the defuzzifier in the FIS. This concept generalizes over 
all possible values of x in the input space X; for every input x EX, the inference engine output 
is a membership function mx(y). The FIS (with the defuzzifier removed) thus defines a fuzzy, 
nonlinear functional mapping F(x, y) from a crisp input x to a fuzzy output mx(y) defined over all 
possible values of yin the output space Y; F:x ~ mx (y). The defuzzifier provides a crisp output 

value y that is representative of the fuzzy output set mx(y); for instance, centroid defuzzification 
is defined by 

This interpretation of the FIS inference engine output can be regarded as the "fuzzy 
analog" of the statistical representation of a random variable by means of its probability 
distribution. It should be noted that the fundamental mathematical axioms that govern the fuzzy 
representation are very different from the axioms of probability; for instance, the area under the 
fuzzy membership function does not integrate to 1 as is required for a probability distribution. 
Hence the properties of the representations, as well as their interpretations, are quite distinct. 
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Variation in the crisp input value has a natural representation in the form of fuzzy input 
data membership; that is, input data uncertainty about x=a can be characterized by the fuzzy 
membership function f.J

0
(x). The propagation of this fuzzy input data through the FIS involves 

the composition of the fuzzy membership function f.J
0
(x) and the nonlinear functional mapping 

F(x, y). The inference engine output MP. (y) is a fuzzy output set and is given by 

MP. (y) = F(x,y) o f.J0 (x), (1) 

where the "o" operator indicates fuzzy composition derived from the Compositional Rule of 
Inference for fuzzy logic.6 This is schematically depicted in figure 8, where f.J

0
(x) is the fuzzy 

input data about x=a and is propagated through the FIS mapping F(x, y) to give the fuzzy output 
set MP. (y). The fuzzy composition of equation (1) can be expressed as 

(2) 

where the T-norm and S-norm operator pair indicates the fuzzy AND and OR operations, 
and,uc(x,y) is the cylindrical extension of input data membership f..la(x) to the x-y plane; that is, 

f.lc(x,y) = f.la(x) "i/ y . 

y 

b 

F(x,y) 
/ 

/ 
I ,.--

[ .... ..... /. ... 
I 

I 

' 
f..la(x) 

FIS 

Defuzzifier 
ji 

F(x,y) Centroid ...... -
Mf.lll(y) Radius of 

"""' Gyration -
kr 

Figure 8. Propagation of Fuzzy Input Data Through the FIS Mapping to a Fuzzy Output Set 
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A common situation in fuzzy logic is where the logical AND and OR operators are 
implemented by the min and max functions, respectively. In this instance, the fuzzy composition 
of equation (1) reduces to 

MP. (y) = ~~[min(F(x,y),Jlc(x,y))]. (3) 

The defuzzifier output is expanded to give (1) y, the centroid of the fuzzy set MP. (y); 

and (2) kr, the radius of gyration about the centroid y. Like the centroid, the radius of gyration is 
a concept borrowed from mechanics and represents a measure of the variability of the fuzzy set 
about the centroid in terms of second moments. It is defined as 

e = f MIJ. CY ).(y- .Y)2. dy . 

r fMIJ.(y).dy 

This two-parameter representation of the output membership provides kr as the measure of 
uncertainty about y, and it can be used in subsequent processing stages to propagate the FIS 
output uncertainty through the data integration system. 
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5. RESULTS 

This section presents discussion of an example FIS for describing the speed of an 
underwater acoustic contact based on available classification information. This is a two-rule 
single-input/single-output system that provides a fuzzy characterization of contact speed with 
only the platform classification (see figure 9). It should be noted that this is a simplified version 
of a speed FIS that describes contact kinematics based on classification and normalized blade­
rate18 and is used to demonstrate the application of fuzzy systems methods to data integration for 
target motion analysis (TMA). 

5.1 INEXACT INPUTS 

The speed FIS depicted in figure 9 is employed to illustrate the methods discussed 
previously for the propagation of uncertain inputs through a fuzzy system. The input 
classification ranges from 0 to 1, with classification=O.O having membership 1 in class diesel, 
and classification= 1.0 having membership 1 in class nuclear. The membership functions for the 
input classes diesel and nuclear are displayed in the fuzzifier. The output speed ranges from 0 to 
40 knots, with membership functions for output classes low and high as shown in the inferencing 
block of the inference engine. These speed membership descriptions assume that the blade-rate 
is known to be "medium." The rules, which have equal weighting, are (1) IF classification is 
diesel, THEN speed is low, and (2) IF classification is nuclear, THEN speed is high. 

Class 
x=0.3 

Inference Engine 

Knowledge Base: Heuristic Rules 

Speed (knots) 
Aggregation 0 40 

lnferencing 

Figure 9. Speed Characterization FIS 

Centroicl 

Defuzzlfier 

Speed 
)1"14.2 

When the input is known precisely (crisp input of classification = 0.3), the standard 
processing algorithms of fuzzy logic apply. The fuzzy output set obtained from the inference 
engine is plotted in the defuzzifier block of figure 9 and shows the possibility values associated 
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with contact speed in the range of 0 to 40 knots. For instance, a speed of approximately 10 knots 
has possibility of 0.8, and speeds in the range of 15 to 35 knots have possibility of 0.2. Two 
example cases of uncertain inputs and the resulting fuzzy output sets from the speed FIS are 
shown in figure 10 in comparison with the crisp input case. The propagation of these two inputs 
through the FIS by means of equation (3 ) is described as follows. 

1. Classification is approximately 0.3. This input is represented by a Gaussian 
membership function with mean 0.3 and standard deviation 0.05 (figure 10 (a)) and is given by 

( ) _ [-(x- 0.3? / J f.io.3 x - exp /2 * 0.052 . 

The propagation of this input through the speed FIS is depicted in figure 11 and describes the 
computational mechanics of fuzzy composition. Figure 11(a) shows the cylindrical extension of 
.Uo.3 (x) to the x-y plane; that is, 

J.io.3(x,y)=J.Lo.3(x) Vy. 

The fuzzy nonlinear functional mapping F(x, y) is the composite surface formed by taking all 
output membership sets for the entire range of input values. This surface for the speed FIS is 
shown in figure 11(b). Given the fuzzy input J.i0.3 (x), the conditioned surface Fc(x, y) is the 

pointwise AND of this input and the fuzzy mapping F(x, y). That is, 

Fc(x,y) = min(F(x,y), J.L 0.3(x,y)), 

and it is illustrated in figure 11(c). The fuzzy composition ofin~ut J.L0.3 (x) and mapping F(x, y) 
is completed by projecting the conditioned surface Fc(x, y) onto the output y, forming the fuzzy 
output set 

MP<J.J (y) = ~~[ Fc(x,y)] = F(x,y) o f.io.3(x). 

M~'o.J (y) represents the output response of the FIS to the uncertain input J.L0.3 (x) and is depicted 

in figure 11(d). This output speed membership has an increased level of possibility of0.3 in the 
15- to 35-knot interval, thus making it more plausible for the contact to be in this speed range 
while maintaining a possibility of 0.8 at approximately 10 knots. Since higher speeds are now 
more plausible, this reflects an increased uncertainty in the contact state estimate owing to the 
possible variation in classification. 

2. Classification is between 0. 2 and 0. 4. This input is characterized by a uniform 
membership function in the interval 0.2 to 0.4 (figure 1 O(a)). The propagation of this input 
through the speed FIS follows the process described above, and the resulting fuzzy output set is 
shown in the comparative diagram of figure 1 O(b ). There is an attendant increase in the contact 
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speed possibility, both at approximately 10 knots and in the 15- to 35-knot interval. In a TMA 
context, this will result in a larger number of contact tracks that have to be formed, maintained, 
and assessed as a result of the increased uncertainty in platform classification. 

.e­
.s:; 
~ 
Q) 

"E o.5 
Q) 

:::!: 

0 0.2 

Crisp 

0.4 0.6 0.8 

Classification 

(a) Uncertain Input: Classification Membership 

~ ;e 
~ 0.5 
0 
c.. 

0 

0 10 20 30 

Speed (knots) 

(b) Fuzzy Output: Speed Possibility 

40 

Figure 10. Uncertain Input and Fuzzy Output 
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Figure 11. Fuzzy Composition: Computational Mechanics for the Gaussian Input 

17 



5.2 APPLICATION: SINGLE-LEG TMA 

This example considers the bearings-only TMA problem, which is to estimate contact 
location and motion parameters (state) using a time series of bearing measurements. A 
fundamental property of bearings-only TMA is that the contact range is not observable for a 
single-leg of own-ship motion (a leg is defined as a time interval of constant platform velocity). 
The range becomes observable only after an own-ship maneuver followed by a second leg of 
motion. This introduces a time latency in the estimation process, owing to towed array sensor 
instability induced by the maneuver and the necessity of collecting sufficient data on all legs of 
motion. This time delay may be unacceptable under c·ertain tactical conditions when rapid 
estimates, albeit of poorer solution quality, are desired. 

For the single-leg TMA problem, from the point of view of the range-normalized relative 
solution, 19 the sequence of sphere-bearing measurements is plotted in figure 12(a). The 
maximum likelihood estimate of the relative motion parameters (that is, bearingp, bearing 

A A 

rate /3, bearing acceleration jj) results from a least-squares curve fit, as shown. The three-
parameter end-point solution 

where subscripts i andfindicate initial and final time and R denotes range, allows us to 
parameterize all constant-velocity contact tracks in a range-dependent fashion. These possible 
tracks constitute an infinite continuum of tracking solutions that optimally fit the measurements. 
A discrete set of the tracks within the minimum and maximum initial range constraints of2 kyd 
and 20 kyd is illustrated in figure 12(b). It should be noted that all these tracks are equally likely, 
so the final range of the contact is indeterminate within the derived range-constraint boundaries. 
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Figure 12. Relative-Motion Parameter Fit vs Range-Dependent Contact Tracks 



For this scenario, the classification input is J.LoJ (x), indicating the platform is more likely 

to be a slow-moving diesel than a relatively fast-moving nuclear (with some associated 
uncertainty). The resulting fuzzy characterization of contact speed is depicted in figure 11(d). 
This kinematic information is integrated with the single-leg TMA family of solutions to provide 
fuzzy weights associated with the different contact tracks. The weighted tracks are schematically 
illustrated in figure 13, where the intensity of the track is directly proportional to its weighting. 
It can be seen that the track region around the 1 0-knot speed constraint has the greatest weight, 
resulting in the final range to target having maximum possibility in the 3- to 6-kyd range. In 
contrast to the traditional relative solution of figure 12(b ), a better quality tracking solution has 
been obtained. 
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Figure 13. Contact Track Assessment: Fuzzy Weights 

5.3 MISSING INPUTS_ 

The "missing input" situation occurs when the available data are inadequate to describe 
one or more inputs to an FIS, that is, the available information is incomplete. This situation is 
handled by considering the missing input to be an input value with "infinite" uncertainty. For an 
FIS input, this uncertainty is modeled as a uniform membership function that spans the range of 
the input variable from its lower to upper limit. This approach mirrors the method used in a 
probabilistic context, where missing measurements are modeled by a nominal value with a very 
large variance. 

Consider the speed FIS depicted in figure 9. If the classification of the contact is 
unknown, the input is described as shown in figure 14(a). The resulting speed output, which is 
depicted in figure 14(b ), is essentially an aggregation of the two speed-class memberships of the 
system. Here, the assumption underlying the speed membership description is that the blade-rate 
is known to be "medium." There are two intervals of equivalent possibility for the contact speed, 
corresponding to diesel and nuclear platform classes. Integrating this information with the 
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single-leg TMA family of solutions (figure 12(b)) results in the contact track assessment shown 
in figure 15. It can be seen that the lack of classification information has resulted in a 
multimodal speed possibility surface and is reflected in the fuzzy weighting associated with the 
tracking solutions. 
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5.4 COMPUTATIONAL ISSUES 

The computation of the fuzzy nonlinear mapping F(x,y) can be numerically intensive and 
is a function of the number of inputs and the resolution of the grid employed. For instance, the 
two-input speed FIS mapping with grid size of 100 takes approximately 45 minutes to compute 
on a Pentium 1 00-MHz system. However, this mapping is fixed for a given fuzzy system, so it 
was precomputed offline and stored prior to actual use of the FIS. A vectorized approach to the 
fuzzy composition algorithm was devised using the MATLAB computing environment.20 The 
resultant system is found to evaluate the fuzzy output in about five seconds, thus achieving 
significant speed-up and realistic computing times. It is worth noting that the use ofMATLAB 
as a development testbed results in slower run times than does the use of executables in high­
level programming languages, such as C, and much faster speed-ups can be expected. 
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6. CONCLUSIONS 

Current methods for data integration and decision support in submarine combat systems 
do not adequately account for uncertainty in an automated fashion, hence continuing a heavy 
reliance on operator manipulation and human interpretation. Fuzzy logic offers an enabling 
technology for automated uncertainty management in the data integration process by 
incorporating qualitative information described in semantic tenns or via heuristics in a numerical 
framework. It is expected that significant benefits will be derived from this technology through 
( 1) increased automation of operator functions and (2) improved quality of information provided 
to support infonned decision-making, resulting in reduced manning and attendant cost savings. 

In this work, a novel solution is presented to the fundamental problem of handling 
uncertainty in the input data to a fuzzy inference system. Application of this concept to the fuzzy 
characterization of contact speed with uncertain platform classification is demonstrated and is 
shown to provide significant improvements in tracking solution quality for the single-leg TMA 
problem. Fallow-on efforts are in progress to address the issue of modeling uncertainty in the 
basic structure of a fuzzy inference system, and future studies propose to investigate the 
theoretical relationships between Bayesian probability and fuzzy systems theory. 
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